
30 The Delphi Magazine Issue 65

The Man-Machine
This month we look at finite automata
or state machines

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

There are some times when the
weekend during which I’ve

decided to write my next column
looms and I have no idea what I
want to write about. That dread
condition called Writer’s Block
rears its ugly head. I flip through
algorithm books to no avail; noth-
ing seems to click that spark. It’s
not that I’m running out of algo-
rithms and data structures, you
understand (after all Knuth wrote
three big volumes on the subject),
it’s just that nothing seems to grab
my fancy. I don’t want to drag out
an article, word by painful word,
and then have to get enough
enthusiasm to design and write the
code. No, you deserve better than
that. When I want to write about
something, the words flow, the
code seems to write itself, and Our
Esteemed Editor and you, my Dear
Reader, get your money’s worth.

And then, as it happens so often,
several connected things hap-
pened at once, and the topic for
this article was clear.

The first one was TurboPower’s
SysTools newsgroup. Someone
wanted a particular string func-
tion, as it happens not covered by
SysTools, and had tried to write it
himself by using other SysTools
routines. For some reason, the way
to write this particular string
routine came into my head fully

formed: use a state machine. I
wrote the function, together with a
small test program, and posted it
to the newsgroup. Fifteen minutes,
tops.

Coincidentally, the next one was
also to do with SysTools: this time,
a bug in the regular expression
code. This code is pretty nasty if
you don’t know what algorithm
was being followed, so that neces-
sitated a diversion into under-
standing the algorithm and then
tracing the code to find the bug. It
was to do with the backtracking
algorithm used within the code.

And then, whilst browsing on
eBay, I found a textbook with an
intriguing title: Compiler Construc-
tion: Theory and Practice by Barrett
et al. I bid on it for fun and won.
When I got the book I flipped
through it wondering what I’d
bought on a whim and, by golly, it
had the clearest explanation of
finite state machines and automata
that I’d ever read. Much easier to
understand than the Dragon Book
in my view. (The Dragon Book is of
course Compilers: Principles, Tech-
niques, and Tools by Aho et al, so
called because it has a dragon on
the cover.)

Suddenly the way was clear: an
article on finite state machines.

Before you turn the page, think-
ing that dear old Bucknall has

flipped and you’d never
use anything like that,
even if you did know
what they were, let me
reassure you. We will be
taking it easy, working
our way in step by step,
and before long you’ll be
ready to convert an NFA
to a DFA.

Neon Lights
Let’s go back to the original prob-
lem on the SysTools newsgroup.
Paraphrasing, the programmer
wanted this: a function that would
take a string and return it with the
same text, except that all runs of
two or more spaces in the original
string would be replaced by a
single space, except if these multi-
ple spaces occurred in a quoted
part of the text. So,

The cat said “Hello there”

Would be converted to,

The cat said “Hello there”

With the three spaces between
‘The’ and ‘cat’ replaced by one,
and the two spaces between ‘Hello’
and ‘there’ left as they were (since
they appear in between double
quotes).

Think a little about how you
would perform this conversion
before reading on. Using a couple
of SysTools routines, the program-
mer was trying to extract out each
word from the original string and
then join them together, separat-
ing them by a single space. To me,
that kind of string manipulation
rings alarm bells galore; visions of
all the string allocations and frees
floated before my eyes. Surely
there must be a better way? At
which point the answer came in a
flash.

My solution was to use a state
machine to read the input string
character by character. There’s
that phrase again, state machine. A
state machine is merely a system
(usually digital) that moves from

➤ Figure 1:
State machine to
compress two or
more spaces to one.

January 2001 The Delphi Magazine 31

one state to another according to
input it receives. The moves are
called transitions. You can think of
a state machine as a specialized
flowchart and, indeed, Figure 1
shows the flowchart for my func-
tion. The state machine shown has
three states: A, B and C. We enter
the flowchart into state A. At this
point, we read a character from the
input string. If it is a double quote,
we move to state B. If it is a space
character we move to state C. If it is
any other character we keep in the
same state, A (this is shown by the
loop).

When we make a move, we may
also have an action to do. So, each
of these moves just described
causes a character to be output to
the return string. Suppose we read
a double quote and therefore
moved to state B. We will have
output the double quote. State B is
even simpler than state A: the only
character that it’ll do something
special for is a double quote. For
any other character, it’ll output the
character to the output string and
stay in the same state, B. For a
double quote, it outputs the char-
acter and returns to state A. Notice
that in state B, spaces have no sig-
nificance whatsoever. There is no
move that depends on a space,
apart from the any-character-that-
is-not-a-double-quote move of
course.

Now suppose that we were in
state A and we read a space

character from the input string. We
have to move to state C and emit a
space in the process. State C is a
little like state A: it’s partitioning
the input characters into a double
quote, a space and any other char-
acter. For a double quote it will
output the character and move to
state B. For a space, it does not
output a character at all, and
merely stays in the same state. For
any other character, it outputs the
character and moves to state A.

As you can see, the state
machine properly describes the
function my programmer wanted.
Multiple spaces are removed (this
is state C’s raison d’être), except in
quoted text (this being done by
state B). If we followed the state
machine diagram for the start of
our example sentence, we would
perform the following actions:

Start at A
Read ‘T’, write ‘T’, stay in A
Read ‘h’, write ‘h’, stay in A
Read ‘e’, write ‘e’, stay in A
Read ‘ ‘, write ‘ ‘, move to C
Read ‘ ‘, stay in C
Read ‘ ‘, stay in C
Read ‘c’, write ‘c’, move to A
And so on

There is, however, one more prop-
erty of the state machine in Figure
1 that I have ignored up to now.
States A and C are circled with a
double line, whereas B is not. No,
this wasn’t a mistake on my part
when I was drawing the figure with
Adobe Illustrator. It was deliber-
ate. By convention, state machine

diagrams use the double circle for
a state to mean that this is a termi-
nating state (also known as a halt
state or an accepting state). When
the input string is completely read,
the state machine will be in a par-
ticular state (for my nonsensical
example text above, the final state
of the state machine is A). If that
state is a terminating state, the
state machine is said to accept the
input string. No matter which char-
acters (or, more strictly, tokens)
were found in the input string, and
no matter what moves were made,
the state machine ‘understood’
the string. If, on the other hand, the
state machine ended up in a non-
terminating state, the string was
not accepted and the state
machine did not understand the
string.

In our case, state B is not an
accepting state. What does that
mean in practical terms? Well, if
we’re in state B when the input
string is exhausted then we’ve
read one double quote, but not a
second. The state machine has
been reading a string containing
text with an unbalanced double
quote. Depending on how strict we
were being, this could be viewed
as an error or we could just ignore
it. My state machine views it as an
error.

Talking of errors, although our
particular example doesn’t show
this possibility, we could get into a
state that doesn’t have a move for
a particular character or token.
This would cause an immediate
error.

function aaRemoveSpaces1(const S : string) : string;
var
Inx : integer;
State : (ScanningNormal, ScanningQuoted, ScanningSpaces);
ResultLen : integer;
Ch : char;

begin
if S = '' then begin
Result := '';
Exit;

end;
SetLength(Result, length(S));
ResultLen := 0;
State := ScanningNormal;
for Inx := 1 to length(S) do begin
Ch := S[Inx];
case State of
ScanningNormal :
begin
inc(ResultLen);
Result[ResultLen] := Ch;
if (Ch = ' ') then
State := ScanningSpaces

else if (Ch = '"') then
State := ScanningQuoted;

end;
ScanningQuoted :

begin
inc(ResultLen);
Result[ResultLen] := Ch;
if (Ch = '"') then
State := ScanningNormal;

end;
ScanningSpaces :
begin
if (Ch <> ' ') then begin
inc(ResultLen);
Result[ResultLen] := Ch;
if (Ch = '"') then
State := ScanningQuoted

else
State := ScanningNormal;

end;
end;

end;
end;
if (State = ScanningQuoted) then begin
Result := '';
raise Exception.Create(
'Unbalanced quotes in input string');

end else
SetLength(Result, ResultLen);

end;

➤ Listing 1: State machine code
to remove multiple spaces.

32 The Delphi Magazine Issue 65

It’s More Fun To Compute
So far, we’ve just been looking at
pretty pictures: time for some
code. The first way to code a state
machine is to write statements that
do exactly what the state machine
diagram shows. We tend to invert it
slightly, so that reading the input
string drives the state machine
rather than each state having to
read the next character from the
input string. Listing 1 shows the
code that implements the state
machine from Figure 1. Notice that
I’ve decided not to name the states
unimaginatively as A, B and C to
mimic the figure, but instead have
given them descriptive names like
ScanningNormal, ScanningSpaces
and ScanningQuoted.

The code gets a character from
the input string and then enters a
case statement that switches on
the current state. For each state,
we have if statements to imple-
ment the actions and the moves
depending on the value of the cur-
rent character. At the end we signal
an exception if we are left in the
ScanningQuoted state.

As you can see, the code imple-
ments the state machine perfectly.
The code is even fairly simple to
extend. Suppose, for example, we
wanted to cover the use of single
quotes as well. Simple enough: we
create a new state, D, that func-
tions in the same manner as state B
except that the transitions to and
from it use single instead of double
quotes. In the code, this means a

copy-and-paste so that we dupli-
cate the state B functionality as
state D.

Another example: as it stands at
the moment, the state machine will
replace leading and trailing blanks
with a single space. Suppose we
wanted to remove them from the
returned string. Trailing blanks
aren’t too difficult. Instead of out-
putting the space character on a
transition from state A to C, we
output it when we leave state C,
together with the character that
caused us to leave state C. That
means that, if the state machine
ends up in state C when the input
string is exhausted (indicating that
the input text had trailing spaces),
a space won’t be output. The lead-
ing spaces seem a little more diffi-
cult until we realise that we can
add a new state, call it Z (the
ScanningLeadSpaces state), before A
to weed out all the leading spaces.
This state is only exited when the
first non-blank character is found.
For a space we stay in state Z, for a
quote we move to state B, for any
other character we transition to A.
The new state
machine is
shown in Figure
2 and the code is
shown in Listing
2. (The Scanning-
LeadSpaces and
the Scanning-
Spaces states are
virtually the
same as far as
code goes. It
almost seems
worthwhile to
try and merge

them by having an extra Boolean
flag to denote whether we’re
between words or not. Resist this
temptation: state machines are
easy to understand because of
their multiplicity of well-defined,
independent states. Reducing
their number by the addition of
extra flags is a recipe for bugs and
confusion.)

Now that we have seen a fairly
complex state machine and are
more familiar with the idea, I can
introduce a couple of new terms.
The first is automaton (plural:
automata). This is nothing more
than another fancy computer sci-
ence name for a state machine.
Simple enough. A finite state
machine or finite automaton is
merely a state machine whose
number of states is countable;
there is not an infinity of them.

Last new term for now: determin-
istic. Look at the updated state
machine in Figure 2. No matter

➤ Figure 2: State machine to
compress spaces and remove
leading/trailing spaces.

function aaRemoveSpaces2(const S : string) : string;
var
Inx : integer;
State : (ScanningLeadSpaces, ScanningNormal,

ScanningQuoted, ScanningSpaces);
ResultLen : integer;
Ch : char;

begin
..as before..
State := ScanningLeadSpaces;
for Inx := 1 to length(S) do begin
Ch := S[Inx];
case State of
ScanningLeadSpaces :
begin
if (Ch <> ' ') then begin
inc(ResultLen);
Result[ResultLen] := Ch;
if (Ch = '"') then
State := ScanningQuoted

else
State := ScanningNormal;

end;

end;
ScanningNormal :
..as before..

ScanningQuoted :
..as before..

ScanningSpaces :
begin
if (Ch <> ' ') then begin
inc(ResultLen);
Result[ResultLen] := ' ';
inc(ResultLen);
Result[ResultLen] := Ch;
if (Ch = '"') then
State := ScanningQuoted

else
State := ScanningNormal;

end;
end;

end;
end;
..as before..

end;

➤ Listing 2: New code to
remove leading and trailing
spaces as well.

34 The Delphi Magazine Issue 65

what state we’re in, no matter what
the next character is, we know
without fail where to move to next
(or we signal an error). We have no
choice in the matter: it’s not as if,
for a double quote, we could either
go to state C or state A. The move is
well defined. This state machine is
deterministic; it is known as a
deterministic finite state machine
(DFSM) or a deterministic finite
automaton (DFA). The opposite is
a state machine that involves some
kind of choice with some of its
states. In using this latter type of
state machine we will have to make
a choice as to whether to move to
state X or state Y. As you might
imagine, the processing of this
kind of state machine involves
some more intricate code. These
state machines are known, not
surprisingly, as non-deterministic
finite state machines (NDFSM) or
non-deterministic finite automata
(NFA).

The Hall Of Mirrors
So, with our newfound confidence
in state machines, let’s now
consider an NFA. Figure 3 shows an
NFA that can convert a string
containing a number in decimal
format to a double value. Looking
at it, you may be wondering what
on earth that move is with the
peculiar lowercase e (ε). This is a
no-cost or free move, where you can
make the move without using up
the current character or token.
So, for example, you can move
from the start token A to the next
token B by using up a ‘+’ sign,
using up a ‘-’ sign, or by just
moving there (the no-cost move).
These free moves are a feature
(I think that is the best word for
them!) of non-deterministic state
machines.

Take a moment to browse the
figure and use it to validate strings
such as ‘1’, ‘1.23’, ‘+.7’, ‘-12.’. You’ll
see that the upper branch is for
integer values (those without a
decimal radix point); the middle
one for strings that consist of at
least one digit before the decimal
point, but maybe none afterwards;
the lower one for strings that do
not have any digits before the deci-
mal point but must have at least

one afterwards. If you think about
it for a while, you’ll see that the
state machine won’t be able to
accept the decimal point on its
own.

The problem still remains
though: although the state
machine will accept ‘1.2’ how does
it ‘know’ to take the middle path?
An even more basic question: why
bother with these bizarre NFAs
and ε signs anyway? Let’s just stick
with nice simple DFAs: no choices
equals no problems.

The second question is actually
easier to answer than the first.
NFAs are the natural state
machines for evaluating regular
expressions. Once we understand
how to use an NFA, we are more
than half way towards being able to
apply regular expression matching
to a string, the eventual goal of this
article or two.

Back to the first question: how
does it know? The answer is, of
course, it doesn’t. There are a
couple of ways of processing a
string with such a state machine,
the simpler being a trial-and-error
algorithm. (Note that we are only
interested in finding one path
through the state machine that
accepts the string. There may well
be others, but we’re not interested
in enumerating them all.) To help
in this trial-and-error algorithm we
make use of another algorithm: the
backtracking algorithm.

Let’s see how it works by tracing
through what happens when we
are trying to see whether the state
machine accepts ‘12.34’.

We start off in state A. The first
token is ‘1’. We can’t make the ‘+’
move to B, nor the ‘-’ move. So we
take the free move (the ε link).
We’re now at state B with the same
token, the ‘1’. We now have two
choices: move either to C or to D,
consuming the token in the pro-
cess. Let’s take the first choice.
Before we move, though, we make
a note of what we are about to do,
so that if it was wrong we know not
to do it again. So we arrive at C,
consuming the digit as we do so.
We get the next token, the ‘2’.
Simple enough: we stay in the
same state, using the token.

We get the next token, the ‘.’.
There are no possible moves at all.
We’re now stuck: there are no
moves and yet we have a token to
process. Enter the backtracking
algorithm. We look back at our
notes and see that in state B, when
we were trying to use the ‘1’ we
made a choice. Maybe it was the
wrong one, so we backtrack to find
out. We reset the state machine
back to state B, and we reset the
input string so that we are at the
‘1’. Since the first choice resulted
in a problem, we try the second
choice: the move to D. We make
the transition to state D, consum-
ing the ‘1’. The next token is ‘2’; we
use it up and stay in state D. The
next token is ‘.’: a move to state E,
which, in fact, consumes the next
two digits. We’re finished with the

ε

➤ Figure 3: NFA to validate
a string to contain a
floating-point number.

January 2001 The Delphi Magazine 35

input string, and we’re in a termi-
nating state, E, and so we can say
the NFA accepts the string ‘12.34’.

Computer World
Great stuff with the hand waving,
but now we need to consider how
to code this pretty little mess in
Delphi. We’ve a lot to discuss:
implementing the state machine
algorithm first (is it the same as
coding up a DFA?) and then worry-
ing about the backtracking algo-
rithm (all this mysterious ‘taking
notes’ malarkey).

The first thing to note is that we
can no longer have a simple for
loop to cycle through the charac-
ters in the string. In the DFA case,
every character read from the
input string resulted in a move and
there was no possibility of back-
tracking, or going back to a charac-
ter we’d already visited. So, we’ll
have to replace the for loop with a
while loop instead and make sure
we increment the string index
variable when we need to.

The next thing to notice is that
we cannot have a simple case state-
ment on the input character for
some states. We have a plurality of
‘move choices’ to worry about.
Certain of these choices will be
rejected immediately (the current
character doesn’t match the condi-
tion for the move). Some will be
followed, with some of these being
rejected at a later stage and the
next choice being followed. For
now we’ll simply enumerate the
possible moves and make sure we
follow them in order. We’ll use an
integer variable for that purpose.

All very well, but now we must
consider the final piece: the back-
tracking implementation. What we
want to do is this: whenever we
choose a move that is valid (com-
pare this with rejecting a move
because the current character
doesn’t match the conditions for
the move) we save the fact that we
made that particular move. Then, if
we need to backtrack to the same
state, with the same input charac-
ter, we can easily select the next
move and try that. Of course, at
any stage of the game we may be
making choices about our moves,
so we must save them all and

revisit them in reverse order; the
backtrack goes to the most recent
choice we made. In other words, a
last-in first-out type structure, a
stack.

What shall we save on the stack?
Well, we need to save the state
where we made the choice, the
move number we were making (so
we know which is the next one we
have to try), and finally the charac-
ter index where we made the
choice. Using these three items of
information we can easily rewind
the state machine to a previous
point so that we can make the next,
and possibly better, choice for a
move.

Looking at the figure for this
state machine, we can see that the
longest path through states is not
that long (the longest is four
states), so our stack doesn’t have
to be that big. There are no cycles
to worry about either. (A cycle is a
path you can take from a particular
state that would return you to the
same state. A state machine is
merely a directed graph and so we
use the same terminology.) We’ll
pre-allocate the stack to hold 10
items, which is quite ample for our
purposes.

➤ Listing 3: Awfully complex
NFA code to validate a
floating-point number
(continues on next page).

function NFAValidateNumber(const S : string) : boolean;
const
Digits =
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'];

type
TState = (StartScanning, {state A in figure}

ScannedSign, {state B in figure}
ScanInteger, {state C in figure}
ScanLeadDigits, {state D in figure}
ScannedDecPoint, {state E in figure}
ScanLeadDecPoint, {state F in figure}
ScanDecimalDigits); {state G in figure}

TChoice = packed record
chInx : integer;
chMove : integer;
chState : TState;

end;
var
i : integer;
State : TState;
Ch : char;
Move : integer;
ChoiceStack : array [0..9] of TChoice;
ChoiceSP : integer;

begin
{assume the number is invalid}
Result := false;
{initialize the choice stack}
ChoiceSP := 0;
{prepare for scanning}
Move := 0;
i := 1;
State := StartScanning;
while i <= length(S) do begin
Ch := S[i];
case State of
StartScanning :
begin
case Move of
0 :
begin
if (Ch = '+') then begin
with ChoiceStack[ChoiceSP] do begin
chInx := i;
chMove := Move;

chState := State;
end;
inc(ChoiceSP);
State := ScannedSign;
Move := 0;
inc(i);

end else
inc(Move);

end;
1 :
begin
if (Ch = '-') then begin
with ChoiceStack[ChoiceSP] do begin
chInx := i;
chMove := Move;
chState := State;

end;
inc(ChoiceSP);
State := ScannedSign;
Move := 0;
inc(i);

end else
inc(Move);

end;
2 :
begin
with ChoiceStack[ChoiceSP] do begin
chInx := i;
chMove := Move;
chState := State;

end;
inc(ChoiceSP);
State := ScannedSign;
Move := 0;

end;
else
if (ChoiceSP = 0) then
Exit; // error

dec(ChoiceSP);
with ChoiceStack[ChoiceSP] do begin
i := chInx;
Move := succ(chMove);
State := chState;

{ Continued on following page...}

36 The Delphi Magazine Issue 65

{ Continued from previous page...}

end;
end;{Move case}

end;
ScannedSign :
begin
case Move of
0 :
begin
if (Ch in Digits) then begin
with ChoiceStack[ChoiceSP] do begin
chInx := i;
chMove := Move;
chState := State;

end;
inc(ChoiceSP);
State := ScanInteger;
Move := 0;
inc(i);

end else
inc(Move);

end;
1 :
begin
if (Ch in Digits) then begin
with ChoiceStack[ChoiceSP] do begin
chInx := i;
chMove := Move;
chState := State;

end;
inc(ChoiceSP);
State := ScanLeadDigits;
Move := 0;
inc(i);

end else
inc(Move);

end;
2 :
begin
if (Ch = DecimalSeparator) then begin
with ChoiceStack[ChoiceSP] do begin
chInx := i;
chMove := Move;
chState := State;

end;
inc(ChoiceSP);
State := ScanLeadDecPoint;
Move := 0;
inc(i);

end else
inc(Move);

end;
else
if (ChoiceSP = 0) then
Exit; // error

dec(ChoiceSP);
with ChoiceStack[ChoiceSP] do begin
i := chInx;
Move := succ(chMove);
State := chState;

end;
end;{Move case}

end;
ScanInteger :
begin
case Move of
0 :
begin
if (Ch in Digits) then
inc(i)

else
inc(Move);

end;
else
if (ChoiceSP = 0) then
Exit; // error

dec(ChoiceSP);
with ChoiceStack[ChoiceSP] do begin
i := chInx;
Move := succ(chMove);
State := chState;

end;
end;{Move case}

end;
ScanLeadDigits :
begin
case Move of
0 :
begin
if (Ch in Digits) then
inc(i)

else
inc(Move);

end;
1 :
begin
if (Ch = DecimalSeparator) then begin
with ChoiceStack[ChoiceSP] do begin
chInx := i;
chMove := Move;
chState := State;

end;

inc(ChoiceSP);
State := ScannedDecPoint;
Move := 0;
inc(i);

end else
inc(Move);

end;
else
if (ChoiceSP = 0) then
Exit; // error

dec(ChoiceSP);
with ChoiceStack[ChoiceSP] do begin
i := chInx;
Move := succ(chMove);
State := chState;

end;
end;{Move case}

end;
ScannedDecPoint :
begin
case Move of
0 :
begin
if (Ch in Digits) then
inc(i)

else
inc(Move);

end;
else
if (ChoiceSP = 0) then
Exit; // error

dec(ChoiceSP);
with ChoiceStack[ChoiceSP] do begin
i := chInx;
Move := succ(chMove);
State := chState;

end;
end;{Move case}

end;
ScanLeadDecPoint :
begin
case Move of
0 :
begin
if (Ch in Digits) then begin
with ChoiceStack[ChoiceSP] do begin
chInx := i;
chMove := Move;
chState := State;

end;
inc(ChoiceSP);
State := ScanDecimalDigits;
Move := 0;
inc(i);

end else
inc(Move);

end;
else
if (ChoiceSP = 0) then
Exit; // error

dec(ChoiceSP);
with ChoiceStack[ChoiceSP] do begin
i := chInx;
Move := succ(chMove);
State := chState;

end;
end;{Move case}

end;
ScanDecimalDigits :
begin
case Move of
0 :
begin
if (Ch in Digits) then
inc(i)

else
inc(Move);

end;
else
if (ChoiceSP = 0) then
Exit; // error

dec(ChoiceSP);
with ChoiceStack[ChoiceSP] do begin
i := chInx;
Move := succ(chMove);
State := chState;

end;
end;{Move case}

end;
end;{case}

end;
{if we reach this point, the number is valid
if we're in a terminating state}
if (State = ScanInteger) or

(State = ScannedDecPoint) or
(State = ScanDecimalDigits) then
Result := true;

end;

38 The Delphi Magazine Issue 65

Now we can write Listing 3
to incorporate the backtracking
algorithm. Again the state machine
will accept a string when the string
is exhausted and the automaton
is in a terminating state. It will
fail a string if the string is
exhausted and we’re not in a
terminating state, or if we reach a
state and the current character
cannot be matched against a
move. The second condition has
a further caveat for the NFA case:
the backtracking stack must be
empty.

If you look at this code and com-
pare it to the code for our DFA in
Listing 2 (even though this latter
code is doing something else), you
can see that it’s much more compli-
cated. It’s prone to error as
well (we have to worry about the
stack, about rewinding the state
machine, about selecting another
move, and so on). We could sim-
plify it somewhat by extracting out
pushing/popping choice informa-
tion, initializing for a new state, etc,
but it will still be more compli-
cated. In general, if we need a fixed,
predefined automaton we would
devise and use a deterministic one.
We try and leave non-deterministic
ones well alone.

It’s instructive to devise a DFA
for the number matching example.
Figure 4 shows such a determinis-
tic state machine. I shall leave it to
the interested reader to convert
the figure into code. Once you have
done so, you will see that it
is impressively simpler code than

<expr> ::= <term> |
<term> '|' <expr> - alternation

<term> ::= <factor> |
<factor><term> - concatenation

<factor> ::= <atom> |
<atom> '?' | - zero or one
<atom> '*' | - zero or more
<atom> '+' - one or more

<atom> ::= <char> |
'(' <expr> ')' | - parentheses
'[' <charclass> ']' | - normal class
'[^' <charclass> ']' - negated class

<charclass> ::= <charrange> |
<charrange><charclass>

<charrange> ::= <ccchar> |
<ccchar> '-' <ccchar>

<char> ::= <any character except metacharacters> |
'\' <any character at all>

<ccchar> ::= <any character except '-' and ']'> |
'\' <any character at all>

This grammar means that parentheses have maximum precedence, followed by square
brackets, followed by the closure operators, followed by concatenation, finally
followed by alternation.

the NFA case,
although it per-
forms exactly the
same job.

Of course, with
this NFA example
(and the DFA
figure), all we’re
doing is validating a string to be the
textual representation of a floating-
point number. We should also add
in some actions for each move in
order to calculate the double value
that’s equivalent to the string. For
the DFA, that’s pretty easy. We set
an accumulator variable to 0. As we
decode each digit before the deci-
mal point, we multiply the accumu-
lator by 10.0 and then add the new
digit value. For digits after the
decimal point, I would maintain a
counter for the decimal place,
incrementing it by one for each
digit after the point. For each such
digit, we add that digit value
multiplied by the power of one
tenth that we’ve reached for that
decimal place. Easy enough.

What about the NFA? Well, it
could be pretty bad, let me tell you.
The problem all lies in the back-
tracking algorithm. At any time, we
could suddenly find the state
machine rewinds to a previous
position. For the string to floating-
point number example, it’s not too
bad: we just save the current accu-

D

C

digit

E

digit

BAstart
plus sign

minus sign

digit

decimal
point

decimal
point

decimal
point

digit

digit

mulator value on the stack as we
push a move. When we backtrack,
we’ll pop off the accumulator value
as well as the data for the point
where we made the bad choice.
But, consider another hypotheti-
cal NFA, where the action for a par-
ticular move actually does
something irreversible: we just
cannot backtrack and recover a
previous state. We will have to do a
lot more work to try and avoid this
situation, and in general it’s just
not worth it. Stick to deterministic
automata.

In fact, it can be shown that, if
you have a non-deterministic finite
automaton, you can convert it into
a deterministic one by following a
simple-to-describe algorithm.

Before we do so (it’ll have to be
in next month’s article by the way),
let’s discuss the primary applica-
tion of NFAs: regular expression
matching.

Techno Pop
Let’s recap what regular expres-
sions are. Essentially they’re a
mini-language for describing, in a
simple way, a pattern for searching
text (or, more rigorously, match-
ing text). At its most basic, a
regular expression merely con-
sists of a word or set of characters.
However, using the standard meta-
characters (or regular expression
operators), you can search for
more complex patterns. The stan-
dard metacharacters are ‘.’
(matches any character except
newline), ‘?’ (matches zero or
one occurrence of the previous
subexpression), ‘*’ (matches zero
or more occurrences of the

➤ Figure 4:
DFA to validate
a string to
contain a
floating-point
number.

➤ Figure 5: Regular expression
grammar.

January 2001 The Delphi Magazine 39

previous subexpression), ‘+’
(matches one or more occurrences
of the previous subexpression), ‘|’
(the OR operator, which matches
either the left subexpression or the
right one). You can also define a
character class to match one of a
set of characters.

Figure 5 shows the grammar for
the regular expressions we’ll be
dealing with. It’s written in stan-
dard BNF form. The ‘::=’ means ‘is
defined as’ and the ‘|’ means ‘OR’.
Hence the first line says that an
‘expr’ is either a ‘term’, or is a term,
followed by the pipe character, fol-
lowed by an ‘expr’ again. The
second line says that a ‘term’ is
either a ‘factor’ or is a factor fol-
lowed by a term; and so on so forth.
This grammar definition (it’s called
a grammar because it defines a lan-
guage; if you search in the Delphi
help you will find the grammar for
Object Pascal: it’s defined in the
same way) can be used to generate
a routine to evaluate a regular
expression; we’ll see how next
month. But for now, be aware that
we could use the grammar to

desk-check that a given regular
expression were valid or not.

This month, however, I’d like to
describe how to create an NFA
from a regular expression. We can
then use the NFA to match input
strings against the regular expres-
sion. For example, if we could gen-
erate the NFA for the regular
expression ‘(a|b)*bc’ (read this as
‘an a or a b, repeated zero or more
times, followed by a b, followed by
a c’), we could then see whether
the input strings ‘abc’, ‘abbc’,
‘bac’, etc were matched by the
regular expression (in computer
science terms, we ask whether the
input string is part of the regular
language defined by the regular
expression).

In fact, creating a state machine
diagram for a particular regular
expression is pretty easy. The lan-
guage basically states that a regu-
lar expression consists of various
sub-regular-expressions arranged
or joined together in various ways.
Each subexpression has a single
start state and a single terminating
state and, like Lego, we fit these

simple building blocks together to
show the entire regular expres-
sion. Figure 6 has the most impor-
tant constructions. The first one is
a state machine for recognizing a
single character in the alphabet.
The second is equally simple: a
state machine for recognizing any
character in the alphabet (the ‘.’
operator, in other words). The
third construction shows you how
to draw concatenation (one
expression followed by another).
We simply merge the start state of
the second subexpression to the
terminating state of the first
subexpression. Simple, eh? The
next one is a state machine for the
‘?’ operator: here we have an ε path
as well as the path through the
subexpression from the start state
to the terminating state. The most
complicated constructions are
probably for the ‘+’ and ‘*’
operators.

Anyway if you look at Figure 6,
you’ll notice some interesting
properties. Some constructions
define and use extra states in order
to create their state machine, but

40 The Delphi Magazine Issue 65

they do it in a well-defined way:
every state has either one or two
moves coming from it and, if there
are two moves, both are no-cost
moves. There’s a reason for this: it
just makes it simpler to code.

If we take our little regular
expression example ‘(a|b)*bc’, we
can build up its NFA step by step.
Figure 7 shows how. Notice that at
every step, we have an NFA with
one start state and one terminating
state, and every new state we
create, we make sure that there are
at most two moves from it.

Because of the construction
method we used, we can create a
very simple tabular representation
for each state. The state will be
represented by a record in an array
of such records (the state number
being the index of the record in
the array). Each state record
will consist of something to match,
and two state numbers for the next
state (NextState1, NextState2). The
something is a character pattern to
match; it can be ε, an actual
character, the ‘.’ operator for
any character, a character class (ie
a set of characters, one of
which must match the input
character), or a negated character
class (the input character cannot
be part of the set to match). This
array is known as the transition
table.

We can now show the transition
table for ‘(a|b)*bc’ in Table 1. We
start off in state 0, and move
through, matching each character
in the input string, until we reach
state 7. As you can see, the transi-
tion table describes the state
machine in Figure 7 perfectly, and
furthermore it’s very easy to write
code to traverse the state machine
with a given input string.

Instead of writing a backtracking
algorithm, we’ll go one better. I did
say that there were two ways of tra-
versing an NFA, the trial-and-error
method coupled with the back-
tracking algorithm being the first.
The other one seems even more
bizarre and fantastic: we shall
traverse the NFA with the input
string, tracing every possible path
through the state machine simulta-
neously. We shall make no choices
since we’re following every possi-
ble path at every single step. Even-
tually we shall run out of string,
and have one or more paths that
got us there, or we shall run out of
possible paths part way through
the string.

Scary stuff? Maybe: just follow
along carefully and let’s see if I
can’t persuade you how easy it is.
I shall assume that we have a tran-
sition table for the NFA. I shall also
assume that we have a deque
implementation. A what? A deque

(usually pronounced deck) is a
double-ended queue. You can add
items to either the front or rear of
the queue, and similarly, remove
items from both places as well. In a
way, it acts like a mix between a
queue (add to rear, remove from
front) and a stack (add to front,
remove from front). For this article
we shall only need the operations
Push (add to the front of the
queue), Pop (remove from the
front), and Enqueue (add to the
back of the queue). The deque
we’ll use will be a deque of integers
(actually state numbers).

The first thing is to enqueue -1
onto the deque. This is a special
value that says we need to advance
by one through the input string.
We then enqueue the number of
the initial state onto the deque.
Now, we enter a loop. The first
thing we do is to pop the top state
number from the deque. If it is -1,
as it will be initially, we getthe next
character from the input string
and enqueue a -1. Otherwise it is an
actual state number. We check to
see if the current input character
matches that state’s character pat-
tern. If it does, we enqueue the
state’s first ‘next state’ value,
NextState1. If the state’s character
pattern is ε, we push the first next
state value on to the deque, and if
the second next state value is set,
we push that as well.

➤ Figure 7: Constructing an NFA for (a|b)*bc.

ε

ε

ε

ε

ε

ε

ε

ε

ε

a:

b:

a | b:

b

a

�

�

�

�

a

b

(a | b)*:

�

�

�

a

b

�

(a | b)*bc:

�

�

�

a

b b c

�

�

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

5

5 6 7

start

➤ Figure 6: Constructions used to create an NFA
from a regular expression.

January 2001 The Delphi Magazine 41

The loop terminates once the
deque is empty (no paths match
the input string) or we extract all
the characters (the deque then
contains the set of states we’ve
reached; we can pop them off until
we find the one-and-only terminat-
ing state or not, as the case may
be).

The overall effect is this: we have
a ‘get next character’ value (-1) on
the deque. To the ‘left’ of it is a set
of states that we still need to test
the current character against

(we’re continually popping these
off and pushing states we can
reach via the no-cost move). To its
‘right’ is a set of states derived
from states that have already
matched the current character.
We’ll be getting to them once we
have popped the -1 and retrieved
the next character.

Listing 4 shows this matching
routine. I’ve not shown the deque
code (it’s not that interesting, hon-
estly!) but it is on this month’s disk,
as is the driver program that tests
the matching routine with our
simple regular expression.

Ohm Sweet Ohm
Next month, we’ll look at how to
automatically generate the transi-
tion table from the regular expres-
sion itself (so far, I’ve miraculously

provided it). This will involve
converting the regular expression
grammar into a top-down or recur-
sive descent parser. We’ll then
look at how to convert an NFA to a
DFA (hint: you’ve already seen
part of the process!). Until then...

Julian Bucknall works craftily,
but can be reached at julianb@
turbopower.com

The code that accompanies this
article is freeware and can be used
as-is in your own applications.
© Julian M Bucknall, 2001

➤ Listing 4: Code to match a
string against a transition
table for (a|b)*bc.

type
PaaCharSet = ^TaaCharSet;
TaaCharSet = set of char;
TaaNFAMatchType = ({types of matching performed...}

mtNone, {..no match (an epsilon no-cost move)}
mtAnyChar, {..any character}
mtChar, {..a particular character}
mtClass, {..a character class}
mtNegClass); {..a negated character class}

TaaNFAStateData = record
sdNextState1: integer; {-1 means "not used"}
sdNextState2: integer; {-1 means "not used"}
sdMatchType : TaaNFAMatchType;
case integer of
0 : (sdChar : char);
1 : (sdClass : PaaCharSet);

end;
PaaNFAStateTable = ^TaaNFAStateTable;
TaaNFAStateTable = packed record
stStartState: integer;
stFinalState: integer;
stTable : array [0..9999] of TaaNFAStateData;

end;
function aaMatchRegEx(aTable : PaaNFAStateTable;
const S : string) : boolean;

const
MustScan = -1;

var
Ch : char;
State : integer;
Deque : TaaIntDeque;
StrInx : integer;

begin
{assume we fail to match}
Result := false;
{create the deque}
Deque := TaaIntDeque.Create(64);
try
{push the special value to start scanning}
Deque.Enqueue(MustScan);
{enqueue the first state}
Deque.Enqueue(aTable^.stStartState);
{prepare the string index}
StrInx := 0;
{loop until the deque is empty or we run out of string}
while (StrInx <= length(S)) and not Deque.IsEmpty do
begin
{pop the top state from the deque}
State := Deque.Pop;
{process the "must scan" state first}
if (State = MustScan) then begin
{if the deque is empty at this point, we might as
well give up since there are no states left to
process new characters}

if not Deque.IsEmpty then begin
{if we haven't run out of string, get the
character, and enqueue the "must scan" state
again}

inc(StrInx);
if (StrInx <= length(S)) then begin
Ch := S[StrInx];
Deque.Enqueue(MustScan);

end;

end;
end
{otherwise, process the state}
else with aTable^.stTable[State] do begin
case sdMatchType of
mtNone :
begin
{for free moves, push the next states onto the
deque}

if (sdNextState2 <> -1) then
Deque.Push(sdNextState2);

if (sdNextState1 <> -1) then
Deque.Push(sdNextState1);

end;
mtAnyChar :
begin
{for a match of any character, enqueue the
next state}

Deque.Enqueue(sdNextState1);
end;

mtChar :
begin
{for a match of a character, enqueue the next
state}

if (Ch = sdChar) then
Deque.Enqueue(sdNextState1);

end;
mtClass :
begin
{for a match within a class, enqueue the next
state}

if (Ch in sdClass^) then
Deque.Enqueue(sdNextState1);

end;
mtNegClass :
begin
{for a match not within a class, enqueue the
next state}

if not (Ch in sdClass^) then
Deque.Enqueue(sdNextState1);

end;
end;

end;
end;
{if we reach this point we've either exhausted the deque
or we've run out of string; we need to check the
states left on the deque (if there are any) to see if
one is the terminating state; if so the string matched
the regular expressionn defined by the transition
table}

while not Deque.IsEmpty do begin
State := Deque.Pop;
if (State = aTable^.stFinalState) then begin
Result := true;
Exit;

end;
end;

finally
Deque.Free;

end;
end;

➤ Table 1: Transition table
for (a|b)*bc.

State: 0 1 2 3 4 5 6 7
Match char: a b b c
Next state 1: 1 3 3 5 0 6 7 -1
Next state 2: -1 -1 -1 4 2 -1 -1 -1

	Neon Lights
	It’s More Fun To Compute
	The Hall Of Mirrors
	Computer World
	Techno Pop
	Ohm Sweet Ohm

